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Introduction
In 1980, Dr. Jürgen Ludwig was the first to describe nonalcoholic 
fatty liver disease (NAFLD).1 As a result of severe changes in 
our lifestyles, NAFLD has become the most common liver condi-
tion in China and other parts of the world, with no established 
therapeutic interventions but only prevention in the form of life-
style and nutrition adjustments.2,3 Clinical symptoms of NAFLD 
are expected to impact around 25% of the population worldwide, 

making it a worldwide burden.4,5 The disease encompasses a wide 
range of liver conditions, such as simple steatosis that progresses 
to nonalcoholic steatohepatitis (NASH), severe liver fibrosis, liv-
er cirrhosis, and hepatocellular carcinoma (HCC).6 Western and 
Eastern nations are predicted to have a two- to three-fold increase 
in the burden of end-stage liver disease by 2030.5,6 Recently, us-
ing a two-stage Delphi consensus, NAFLD has been renamed 
metabolic dysfunction-associated steatotic liver disease (MA-
SLD), which refers to a chronic and progressive condition that 
affects 30–40% of the global population and is strongly associated 
with features of metabolic syndrome, including obesity and type 
2 diabetes mellitus.7 MASLD is caused by accumulation of fat 
in the liver and includes a range of disease states, from isolated 
lipid accumulation or steatosis (i.e. MASL), and its active inflam-
matory form, metabolic dysfunction-associated steatohepatitis.8 
MASLD includes patients with hepatic steatosis along with car-
diometabolic risk.

As mentioned above, many NAFLD patients have metabolic is-
sues that further increase their risk of cardiovascular disease, dia-
betes, chronic renal disease, and cancer, which severely degrade 
health.9 The mechanisms underlying the progression of MASLD 
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to NASH and other severe liver disorders are largely unknown. 
This review explores various avenues to understand the complex 
interplay between intestinal microbiota and NAFLD progression.

The presence of the liver in the foregut in early development 
demonstrates that the gut and the liver are connected fundamen-
tally by development stages.7,10 Patients with NAFLD have higher 
levels of intestinal permeability, and it is linked with an increase in 
bacterial population inside the intestines.11,12 Considering the high 
prevalence and morbidity of NAFLD, a better understanding of the 
underlying pathogenic mechanisms is essential for disease man-
agement.13,14 This review aims to summarize significant findings 
on the association of the intestinal microbiota, gut-liver axis, cross-
talk, and balance within the gut microbiota that in turn maintains 
intestinal permeability and tissue homeostasis. The goal is to pre-
sent an overview depicting the impact of the intestinal microbiota 
on NAFLD development. The review describes recent advances in 
precision medicine offered by creative and emerging ideas from 
fecal microbiota transplantation (FMT), prebiotics, synbiotics, and 
probiotics. This review focuses on information that can help an-
swer questions of the effects of alterations in microbiota composi-
tion and microbial function in NAFLD, molecular mechanisms un-
derlying disease pathogenesis, comparative assessment of widely 
used diagnostic biochemical and biophysical methods, the causal 
relationship of gut microenvironment and progression of NAFLD, 
and laying the foundation for gut microbiota-targeted therapeutic 
regimes in NAFLD/NASH treatment. Previous reviews have dis-
cussed the role of the gut-brain axis in the onset of NAFLD, our 
review is focused more on the molecular mechanism of this asso-
ciation and investigating the key mediators of the process.

NAFLD
NAFLD is affiliated with a wide variety of liver disorders caused 
by lipid deposits in the hepatocytes with no causal connection to 
alcoholic drinks and/or drug consumption, as well as acquired or 
hereditary metabolic abnormalities that increase the risk of cirrho-
sis and HCC.15,16 NAFLD is defined clinico-pathologically as the 
deposition of lipids in > 5% of hepatocytes and the exclusion of 
other sources of fat accumulation (Fig. 1).17 This illness is linked to 
diabetes, cardiovascular disease, stroke, and liver damage. It is an 
implication of the hepatic metabolic syndrome that is supported by 
a two-hit approach in pathogenesis, as suggested and evidenced by 
the role of lipid peroxidation. The first hit is directed at the progres-
sion of hepatic steatosis by causing accumulation of triglycerides in 
hepatocytes and facilitates a second hit directed at minor and major 
inflammation, fibrosis, and lipoapoptosis.18,19 Although the intra-
hepatic etiology is still under investigation and the interactions of 
immune responses are not clear, many potential pathophysiological 
mechanisms are proposed. It is well-established that an inflamma-
tory cascade is activated by hepatocytic injury caused by oxidative 
stress and mitochondrial dysfunction. It further activates hepatic 
stellate cells, and infiltration of immune cells occurs as a down-
stream consequence that results in NASH.20 Its prevalence is linked 
to obesity, insulin resistance, hypertension, hyperglycemia, and hy-
perlipidemia.21 Insulin resistance and obesity contribute to chronic 
inflammation, NASH, and altered lipid metabolism, all of which 
contribute to procarcinogenic circumstances that promote HCC for-
mation, the fifth most frequent cancer and the leading cause of death 
globally.22 Type 2 diabetes occurrence signifies faster progression 
of NAFLD to NASH, advanced fibrosis, or cirrhosis, explaining 

Fig. 1. Illustration of common risks and the prevention of NAFLD. NAFLD, nonalcoholic fatty liver disease. 

https://doi.org/10.14218/JTG.2023.00018


DOI: 10.14218/JTG.2023.00018  |  Volume 2 Issue 1, March 202440

Joon A. et al: Gut-liver axis in NAFLDJ Transl Gastroenterol

why its treatment might prove beneficial for lowering the risks of 
NAFLD/NASH.23 It is further reported that extra-hepatic cancers 
such as lung, breast, gynecological, or urinary system cancer are 
linked with NAFLD prevalence in large cohorts. Yet, the mechanism 
is not yet deciphered.24 That may be because obesity and diabetes 
are synergistic with fatty liver pathogenesis in harming the immune 
system and in hindering cell signaling and affecting apoptosis, the 
cell cycle, and proliferation.

NAFLD nomenclature is now updated and associated to link 
to a state of generalized metabolic disarrangement and is there-
fore renamed to MASLD as a more appropriate term according 
to its multisystem and multifactorial characteristics, based on 
proven data from in vitro and in vivo research that relate NAFLD 
to metabolic dysfunction.25 This undefined set of adverse condi-
tions is characterized by hepatocellular ballooning, an increase 
in Mallory–Denk bodies and inflammation, glycogenated nuclei, 
lipogranulomas, and acidophil bodies, as indicated in Takahashi’s 
histological research.26 Clinical manifestations include high serum 
triglyceride, low serum high-density lipoprotein, and high ami-
notransferase, gamma-glutamyl transferase,27 and total bile acid 
(BA) levels.28 However, the enzyme activities may provide a false 
indication for clinical conduct; thus, liver biopsy has been deemed 
a reliable yet invasive approach for diagnosing the stages of steato-
sis and fibrosis. Ultrasound can be used as a standardized method 
for observing the development of simple steatosis to NASH but 
cannot be used to investigate occurrence.15 Noninvasive tests for 
fibrosis, steatosis, and steatohepatitis, such as the Fibro-Test, Stea-
to-Test, Nash-Test, and Acti-Test, are also in extensive use.27 How-
ever, these tests are neither sophisticated nor completely reliable. 
Among studies of total antioxidant capacity, products of oxidative 
damage including total oxidant status and malondialdehyde, and 
DNA/RNA oxidative damage in human serum samples, research-
ers reported that advanced glycation end products were a potential 

noninvasive biomarker of NAFLD.29 Magnetic resonance imaging 
and magnetic resonance elastography have been used for nonin-
vasive quantitative assessment of hepatic steatosis and fibrosis in 
NAFLD,30,31 but more advancement in these imaging modalities is 
needed for future prospects. As a result, noninvasive approaches 
for early identification and treatment of progressive fibrosis are 
required. Table 1 depicts the various diagnostic tools available for 
detecting liver disease.11,25–35

Various mechanisms underlying development of NAFLD
The cellular and immunological mechanisms underlying the de-
velopment of NAFLD toward NASH might include endoplasmic 
reticulum stress,32 mitochondrial dysfunction,33 lipotoxicity, and 
the release of pro-inflammatory cytokines responsible for liver in-
flammation, such as TNF-α, interleukin (IL)-6, leptin, and resistin 
in enhanced amounts and decreased secretion of adiponectin.34,35 
The molecular insights primarily suggest that the root causes are 
increase in fat supply or excessive adipose lipolysis as well as a 
reduction in fat export such as very low-density lipoprotein, a de-
crease in free fatty beta-oxidation and elevation in de novo lipo-
genesis, which leads to decreased insulin sensitivity, the most com-
mon manifestation of NAFLD.36

Effects of fatty acids (FAs)
The majority of fats are stored in hepatocytes as triglycerides, 
while the remaining fats are stored as a combination of free fatty 
acids (FFAs), triglycerides, diacylglycerol, cholesterol esters, free 
cholesterol, and phospholipids.37 Insulin acts as an antagonist for 
lipolysis by inhibiting hormone-sensitive lipase, which controls 
the release of FFAs from adipose tissue, resulting in the accumula-
tion of triglycerides.38–40 Saturated FAs induce hepatocyte apopto-
sis by mediating activation of the JNK pathway.41 TNF-α was pro-

Table 1.  Available diagnostic tools for detecting NAFLD

S. no. Detection method Advantage Disadvantage Reference

1. Metagenomics and metabolomics Stool specimens, easy 
collection, noninvasive tool 
in the differential diagnosis

Unsatisfactory results from 
long-term analysis

26

2. Biopsy/ histopathology Histological spectrum 
differentiating steatosis 
and fibrosis

Invasive, potentially harmful, sampling 
error, expensive, extreme cases 
lead to morbidity and mortality

27–29

3. Liver enzymes and related 
scoring systems. FIB-4 index, 
NFS(NAFLD fibrosis score), NASH 
test, Fibro test, Steato test

Early detection of NAFLD, 
ability to grade the 
diseases into stages, 
better pathogenesis

Not sensitive for NAFLD diagnosis, 
validation required

30,31

4. Liver ultrasound or 
ultrasonography

Noninvasive, time-
saving, well tolerated

Insensitive, operator dependent, 
reliably diagnose NAFLD only if steatosis 
is >33%, less accuracy in patients of 
obesity and coexistent renal disease

11

5. Magnetic resonance imaging, 
elastography, and magnetic 
resonance spectroscopy

Sufficient sensitivity, specifies 
the stages of the disease

Limited availability, needs expertise 
prescription, difficult data collection, 
requires spectral analysis

25,32

6. Magnetic resonance imaging 
proton-density fat traction

More sensitive than liver 
histology, early detection

Unable to assess liver inflammation, 
ballooning, or the resolution of NASH

33,34

7. Computed tomography Sensitive techniques, easier 
quantification of steatosis

Radiation exposure, high 
cost, limited accuracy

35

NAFLD, nonalcoholic fatty liver disease; NASH, nonalcoholic steatohepatitis.
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posed to play an important role in insulin resistance42 and was also 
the first pro-inflammatory cytokine discovered in adipose tissue. 
The sterol response element binding protein gene, which regulates 
lipogenesis, is upregulated when dietary fat, particularly saturated 
fat, is consumed.43 When the amount of calories in our diet ex-
ceeds our liver’s ability to export triglycerides, lipid droplets form 
in parenchymal hepatocytes, signaling the start of NAFLD.44

Role of insulin
The progression of NAFLD to NASH involves insulin resistance 
caused by aberrant insulin post-receptor signaling, which leads to 
dysregulated lipolysis and excessive FA delivery to the liver. FFA 
is a key player in NAFLD development via its role in inducement 
of TNF expression mediated by an activation of nuclear factor-
kappa B.45 The carbohydrate response element binding protein is 
activated by fructose, independent of insulin, and promotes hepatic 
steatosis. There is a more significant release of blood glucose by 
the liver as a result of increased carbohydrate consumption and 
decreased glucose uptake by insulin-resistant muscle and adipose 
tissue because a high-carbohydrate diet activates several lipogenic 
enzymes like acetyl CoA carboxylase and FA synthase, resulting in 
hyperglycemia and other health-threatening symptoms.40

Association between mitochondrial dysfunction and NAFLD
Mitochondrial dysfunction is a central abnormality underlying the 
progression from simple steatosis to steatohepatitis in NAFLD.35 
NAFLD is characterized by a metabolic infestation that often 
includes large, swollen, multilamellar mitochondria, often with-
out cristae, and paracrystalline inclusion bodies.36,46 FAs are 
β-oxidized in mitochondria or esterified to be excreted as very low-
density lipoprotein or stored as lipid droplets.47 When mitochon-
drial activity is disrupted, ATP concentrations are reduced, which 
causes FA metabolism to be downregulated, causing NAFLD pa-
tients to progress from steatosis to steatohepatitis.33,48 Cell prolif-
eration induced in NAFLD and NASH in obesity-associated HCC 
is promoted by elevated IL6 and TNF-β.32 Along with hepatic stel-
late cells, also known as multifunctional cells of the liver, which 
are most closely related to immune cells, hepatic cells also play a 
significant role in the production of fibrogenic stimuli and reactive 
oxygen species,49 which might signify the induction of mitochon-
dria-mediated apoptosis.50 By creating myofibroblast-like cells in 
the liver, reactive oxygen species’ damage of the liver gradually 
leads to liver fibrosis. Adipokines and myokines regulate the ac-
tivation and fibrosis of hepatic stellate cells. Iron accumulation 
catalyzes oxidative stress, which leads to fibrosis and eventually 
NASH, in a process known as haemochromatosis.51 Along with 
anatomical changes in the liver, NAFLD patients show narrowed 
tight junctions and irregularly arranged microvilli, which depicts 
a change in the alignment of intact tight junctions and extensive 
microvilli in their duodenum. The structural backbone of the small 
intestine, occludin proteins are present in far larger quantities in 
healthy intestines than in NAFLD-affected counterparts.52

Link between BAs and NAFLD
BAs have an essential role in cholesterol homeostasis, lipid me-
tabolism, and absorption of fat and fat-soluble vitamins. BA ho-
meostasis disruption is another important prognostic factor of 
NAFLD.53 The progression of NAFLD to HCC can be accelerated 
by intestinal BA deconjugation and hepatocyte exposure to more 
toxic BAs. In studies, increased secondary BAs, taurine, and gly-
cine-conjugated BAs have been linked to steatohepatitis.54 Chang-
es in the pathway associated with the farnesoid X receptor, which 

plays a role in many important systems responsible for BA regula-
tion, glucose regulation, and lipid regulation can lead to imbal-
ances in energy balance, exacerbating inflammation and fibrosis. 
Cholic acid, a secondary BA, has been shown in studies to protect 
mice from hepatic lipogenesis by inhibiting sterol regulatory ele-
ment-binding protein 1 and its target genes.55 In human gallstone 
patients, chenodeoxycholic acid administration lowers the produc-
tion of elevated hepatic very low-density lipoprotein and plasma 
triglyceride levels. Obeticholic acid (6α-ethyl-chenodeoxycholic 
acid), a semisynthetic form of chenodeoxycholic acid, has been 
shown to be very protective in obese rats in Phase-2a and Phase-2b 
trials. It helps reduce the risk of liver steatosis as well as fibro-
sis.56,57 Intrahepatic accumulation of tauro-beta-muricholic acid, a 
farnesoid X receptor nuclear receptor antagonist which is involved 
in the regulation of BA, lipid, and glucose metabolism, showed 
contribution in decreasing risk to NAFLD in antibiotic and tempo-
ral treated mice by inhibiting farnesoid X receptor signaling in the 
intestine.58,59 Significant decreases in serum palmitoyl-, stearoyl-, 
and oleoyl-lysophosphatidylcholine were detected in mice with 
NASH.60

Gut-liver axis
The gut-liver axis is the bidirectional link between the gut, its bac-
teria, and the liver. The gut barrier is an integral secure system with 
an army of tight junctional complexes. These goblet cells form the 
mucus layer, Paneth cells that regulate antimicrobial defense, and a 
network of innate and adaptive immune cells.61 It maintains home-
ostasis by interacting with nuclear receptors to control metabolic 
activities and forming a feedback loop for BAs and antibodies via 
the portal circulation between the liver and the gut.62 The gut mu-
cosal barrier comprising intestinal epithelial cells segregating gut 
microbiota and host immune cells maintains gut homeostasis. The 
balance and smooth maintenance are due to the integrated action of 
the protective layer of defensins on the intraluminal surface, tight 
junction proteins, and gut immune cells. If the mucosal membrane 
is disrupted, the resulting altered intestinal permeability induces 
local inflammation. Bacterial products, if translocated to various 
cell types such as Kupfer cells, will initiate a fibrotic response re-
sulting in harmful effects in hepatocytes and to host immunity. It 
also facilitates pathogen-associated molecular patterns, lipopoly-
saccharides, and microbiome-derived metabolites to enter the 
liver through the portal circulation, triggering a pro-inflammatory 
cascade that exacerbates hepatic inflammation.63 IL22 is reported 
to regulate gut epithelial cells and, thereby, related immune func-
tions.64 As a result, lipopolysaccharide reduction and tight junction 
restoration may be effective as a treatment for reducing NAFLD 
and its development.65 To gain insight into explaining the progres-
sion of NAFLD, alterations of gut bacteria abundance that are in-
volved in NAFLD pathogenesis.

Gut microbiota
The human gut microbiome contains 10–100 trillion microorgan-
isms, mostly bacteria, which outweigh our human cells by a factor 
of 10.66 Alpha-diversity (among samples) and beta-diversity (be-
tween samples) are two types of microbiome diversity (comparison 
of samples from a given population).67 The microbiome’s bacterial 
component has received the most attention so far. Bacteroidetes 
and Firmicutes are the two most prevalent bacterial groups, and 
Euryarchaeota is the most common of the Archaea.68 Nonbacterial 
species, such as resident archaeal, fungal, and viral populations, 
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are predicted to have roles in the microbiome, especially in their 
interactions with other microbiome populations. Gut colonization 
begins at birth, and a complex combination of dietary habits, eth-
nicity, and genetic variables influences microbiota composition. In 
humans, the gut microbiota can define the host condition, whether 
it is in homeostasis or illness. The gut microbiota interacts with the 
immune system and actively absorbs food substances into the por-
tal and systemic circulation. Gut microbiota may affect NAFLD by 
improving energy production, maintaining gut permeability, regu-
lating inflammation, modifying choline and BA metabolism, and 
enhancing endogenous ethanol synthesis. As a result, it may influ-
ence the host, even if it is not present, by modulating immune cells 
and the production of metabolites.69 Many studies have evaluated 
various samples, such as fecal matter and animal tissues, to explore 
the roles of different bacteria in the progression of NAFLD/NASH.

The clear relationship between microorganisms and the human 
host makes the human a superorganism.70 This diversity that es-
tablishes a life-long, bidirectional, symbiotic association between 
the gut and microorganisms is called the intestinal microbiota and 
is favored by the food that passes through the tract, affecting the 
integrity of the digestive tract and other linked systems.71 These 
commensal bacteria help the host metabolize the dietary fibers that 
cannot be processed due to a lack of enzymes.72 Veillonellaceae 
and Rhinococcacea were selected as the most representative and 
significant fibrosis-related bacterial taxa as shown in Table 2.9,73-91

Gut metabolites: keystone component
Fermentation of dietary fiber and choline yields metabolites such 
as short-chain fatty acids (SCFAs), including acetic acid, propion-
ate, butyrate, and succinate, hydrogen sulfide, and other proteo-
lytic metabolites. SCFAs mediate the regulatory effect on the gut 
microbiota and host inflammatory responses, such as modulating 
adiponectin and resistin transcriptional expression by modifying 
DNA methylation in obese mice.92 Butyrate, the most potent anti-
inflammatory mediator, has been shown to be effective in reducing 
local inflammation in the intestine and preventing the progression 
of inflammatory responses to the systemic circulation.93 SCFAs 
enter the liver directly through the portal vein, where they help 
to reduce inflammation and steatosis. Though SCFAs regulate the 
health of visceral adipose tissue and FA, lipid, and glucose metab-
olism, combining their advantages while preserving intestinal ho-
meostasis is complex, and the overall effect of SCFAs on NAFLD 
etiology is yet unknown.92

Colonic bacteria also ferment nondigestible carbohydrates to 
SCFAs. SCFAs have been proposed to contribute to obesity and 
liver steatosis as they provide approximately 10% of the daily 
caloric consumption and may enhance nutrient absorption by 
promoting the expression of glucagon-like peptides.94 However, 
trimethylamine-N-oxide is only derived from gut microbial me-
tabolism.73 Trimethylamine-N-oxide, a gut microbe-generated me-
tabolite produced by the flavin monooxygenase 3 produced in the 
liver, is detrimental to liver health. Cystathionine β-synthase/cys-
tathionine γ-lyase regulates trans-sulphuration and desulfuration 
reactions in the liver, kidney, small intestine, pancreas, and brain.74 
The trans-sulphuration pathway is linked to the methionine cycle 
through homocysteine, a nonprotein sulfur-containing amino acid. 
Homocysteine is irreversibly metabolized via the trans-sulphura-
tion pathway to support endogenous cysteine synthesis. Cystathio-
nine β-synthase and cystathionine γ-lyase catalyze alternative 
desulphuration reactions in addition to the trans-sulphuration path-
way.75 H2S is synthesized endogenously by these alternative reac-

tions. Homocysteine and cysteine may catalyze these alternative 
reactions.76,77 It has been shown that cystathionine β-synthase and 
cystathionine γ-lyase are highly expressed in hepatocytes, lead-
ing to their high expression in the parenchyma tissue.78 In patients 
with NAFLD and its associated comorbidities, there are changes in 
circulating homocysteine and hydrogen sulfide levels. Homocyst-
eine has been proposed as a risk marker for NAFLD.79

Gut microbiota dysbiosis
In dysbiosis, the normal flora in the gut microbiome is disturbed, 
resulting in increased microbial translocation and the development 
of alcoholic liver disease. This affects the abundance of species 
such as Streptococcus, Shuttleworthia, and Rothia.80 Small metab-
olites are produced by healthy gut microbiota, including SCFAs, 
which provide energy to colonic epithelia. When the microbiota 
starts to produce toxic metabolites that interfere with the gut-liver 
axis and cause metabolic dysfunction, dysbiosis is confirmed, and 
eventually, chronic disease development occurs. In patients with 
NAFLD, decreased abundance of Faecalibacterium prausnitzii 
and increased abundance of Proteobacteria, Escherichia coli, 
and Enterobacteriaceae have been reported.81 NASH patients 
had decreased fecal Bacteroidetes and increased Clostridium coc-
coides.82 At the same time, chronic alcohol consumption can cause 
leaky gut and reduced gut bacterial diversity, which might be the 
leading cause of alcoholic liver disease.83

NAFLD patients had fewer Bacteroidetes, Ruminococcaceae, 
Faecalibacterium prausnitzii, and more Prevotella, Porphyro-
mas, Lactobacillus, Escherichia, and Streptococcus bacteria than 
healthy subjects.53,84 However, increased levels of Veillonella, 
Megasphaera, Dialister, Atopobium, and Prevotella have been ob-
served in cirrhotic patients. Several mechanisms may contribute 
to NAFLD pathogenesis as a result of the influence of the gut mi-
crobiota influence, including (1) increased production and absorp-
tion of gut SCFAs, (2) altered dietary choline metabolism by the 
microbiota, (3) altered BA pools by the microbiota, (4) increased 
delivery of microbiota-derived ethanol to the liver, (5) gut perme-
ability alterations and endotoxin release, and (6) interaction be-
tween specific diet and microbiota.47 Chronic kidney disease may 
aggravate NAFLD and associated metabolic disturbances through 
multiple mechanisms, including altered intestinal barrier function 
and microbiome composition.85 3-phenylpropionate, a metabolite 
generated by anaerobic bacteria, plays a crucial part in the pro-
cess.86,87 NASH development is linked to gut microbiome-derived 
products of branched-chain and aromatic amino acid metabolism, 
such as phenylacetic acid and 3-(4-hydroxyphenyl) lactate, which 
are linked to insulin resistance.

Pathogen-associated molecular patterns develop when the gut 
microbiota is out of equilibrium (dysbiosis). Dysbiosis is also 
linked to increased exposure to bacterial compounds found in the 
intestine, such as lipopolysaccharides. Hepatic cells have a variety 
of cellular receptors that react to molecular pattern molecules (e.g., 
damage-associated molecular patterns and pathogen-associated 
molecular patterns), which attract neutrophils, macrophages, and 
other innate immune system components. Pathogen-associated 
molecular patterns, elevated lipopolysaccharide levels, and dam-
age-associated molecular patterns activate Kupfer cells, which 
detect liver tissue injury. When Kupfer cells are activated, they 
release pro-inflammatory cytokines and chemotactic factors, such 
as the chemokine C-C motif ligand. Consequently, hepatic stel-
late cells are activated, which leads to the modulation of key ex-
tracellular matrix components and functional interactions with a 
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microRNA implicated in NAFLD fibrosis as shown in Figure 2.88 
We have highlighted various metabolites of the gut microbiota and 
their roles in NAFLD progression in Table 3.88–91,95-114

Therapeutic interventions
Gaining insights into the role of gut microbiota, microbe-associ-
ated molecular patterns, and metabolites produced by microbiota 
in the development of NAFLD may pave the way for innovative 
diagnostic and therapeutic strategies. NAFLD encompasses a di-
verse range of disorders, each with distinct subtypes resulting from 
different combinations of the aforementioned factors. Thus, it is 
crucial to incorporate this knowledge into both the diagnosis and 
treatment of NAFLD.

Currently, the diagnosis and monitoring of liver disease require 
a liver biopsy. Therefore, it is crucial to find reliable noninvasive 
methods to assess NAFLD. Recent research on gut microbiota has 
found that certain bacterial species and metabolites were useful as 
diagnostic and prognostic indicators. Loomba et al. have identi-
fied a panel of 37 bacterial strains from the gut microbiota that 
accurately diagnose advanced fibrosis in NAFLD patients. Ad-
ditionally, several metabolites derived from the microbiota show 
promise as indicators of NAFLD. Phenylacetic acid, succinate, 
and 3-(4-hydroxyphenyl) lactate are among the most promising. 
NAFLD patients often have a decreased microbial gene richness, 
which affects the metabolism of aromatic and branched-chain 

amino acids. For example, 3-(4-hydroxyphenyl) lactate, which is 
associated with liver fibrosis, is a byproduct of aromatic amino 
acid metabolism. The level of phenylacetic acid in the blood is cor-
related with the severity of liver steatosis. Succinate, produced by 
bacteria associated with NAFLD like Bacteroidaceae and Prevo-
tella, is elevated in feces, serum, and liver samples of NAFLD 
patients.31

On numerous levels, a comprehensive understanding of gut 
microbiota might be employed for therapeutic purposes, as illus-
trated in Figure 3. The utility of precision medicine encompass-
ing tailored probiotics, prebiotics, synbiotics, and FMT to target 
dysbiosis of the gut microbiota in individual patients provides a 
new avenue for microbial-derived therapeutics. Another exciting 
prospect is the modulation of the production of beneficial metabo-
lites and blocking the synthesis of harmful ones. FMT is emerging 
as a potential treatment for various gastrointestinal disorders and 
offers a way to restore a healthy gut microbiota composition and 
function in patients. FMT is a medical procedure where fecal mat-
ter from a healthy donor is transplanted into a recipient’s gut to re-
store a healthy gut microbiome. It can help restore a balanced and 
diverse gut microbiota in NAFLD patients, potentially mitigating 
dysbiosis by the introduction of Lactobacillus, Bifidobacterium, 
and Pediococcus species.115 FMT has been shown to enhance gut 
barrier function, reducing the translocation of harmful bacterial 
products like lipopolysaccharides into the liver and reducing in-
flammation.116 FMT may influence BA composition and metabo-
lism in the gut, which can impact liver health, inflammation, and 

Fig. 2. Schematic representation of how the gut microbiota contributes to the development of NAFLD. In the left panel, the gut-liver axis components are 
functioning normally. NAFLD is depicted in the right panel. The dysbiotic microbiome, together with the changed intestinal barrier due to the malfunction of 
the tight junctions, facilitates the translocation of some bacterial products into the portal vein. These bacterial products interact with TLRs on the surface of 
the hepatic cells, which leads to inflammation and NAFLD development. NAFLD, nonalcoholic fatty liver disease; TLR, Toll-like receptor.
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fat accumulation in hepatocytes.117 FMT from a healthy donor 
may increase the production of beneficial SCFAs in the recipient’s 
gut. SCFAs have anti-inflammatory properties and can improve 
insulin sensitivity. FMT can facilitate communication between the 
host and the gut microbiota, leading to positive changes in meta-
bolic pathways. Clinical trials exploring the efficacy of FMT in 
NAFLD patients are needed to validate its potential therapeutic 
role.115 The identification of specific gut microbial markers as-
sociated with NAFLD progression could lead to the development 
of noninvasive diagnostic tools. These tools may rely on fecal-, 

blood-, or breath-based biomarkers that enable early detection and 
monitoring of NAFLD without the need of invasive liver biop-
sies. Further research on the interaction between gut microbiota 
and metabolites could shed light on the underlying mechanisms 
that drive NAFLD progression. Moreover, single beneficial strains 
or groups of beneficial strains (probiotics) can be introduced into 
the gut microbiota to restore lost functionality, while harmful or 
undesirable strains can be removed with antimycotics, antibiotics, 
or bacteriophages. Finally, microbial pathways might be targeted 
to minimize or prevent the formation of harmful metabolites while 

Table 3.  Role of various metabolites in NAFLD progression

Metabolites Role References

Short-chain fatty acids

1. Propionate Activates AMP-activated protein kinase, increases expression of the fatty 
acid oxidation gene, suppresses macrophage pro-inflammatory activation, 
inhibits isoproterenol and adenosine deaminase-stimulated lipolysis

89,90

2. Butyrate Activates AMPK activation, increases expression of the fatty acid oxidation 
gene, suppresses macrophage pro-inflammatory activation, upregulates 
glucagon-like peptide-1 receptor expression to improve NAFLD

94,95

3. Acetate Regulates hepatic lipid metabolism and insulin 
sensitivity via FFA receptor 2 in hepatocytes

96

Indole derivatives

4. Indole-3-acetic acid (IAA) Improves lipid metabolism, insulin resistance, 
and inflammatory and oxidative stress

97

5. Indole Reduces the lipopolysaccharide-induced upregulation 
of -pro-inflammatory mediators

98

6. Indican: indoxyl-3- sulfate Reduces gut permeability in high fat diet-fed mice 99

7. Indigo Development of obesity, white adipose tissue, 
inflammation, and insulin resistance

100

8. IPA: indole-3-propionate Increases expression of the intestinal mucosa and tight junction proteins 101,102

9. Ethanol Oxidative stress and inflammation, increases gut permeability 
and levels of lipopolysaccharide, decreases the gut barrier

103

10. 2-butanone Regulates insulin sensitivity 85

11. Ceramides Induces sterol regulatory element-binding protein regulator, increases 
TAG (Triacyl glycerol) synthesis and lipid droplet storage

104

Bile acids

12. Primary bile acids 
chenodeoxycholic acid, 
cholic acid, deoxycholic 
and lithocholic acid

Increases insulin sensitivity, inhibits gluconeogenesis and lipogenesis, 
anti-inflammatory and antifibrotic properties, regulates the 
gut microbiota, enhances fatty acid translocation and uptake, 
promotes CD36 translocation to the plasma membrane

105,106

13. Choline Regulates mitochondrial bioenergetics and fatty acid beta-oxidation, 
phosphorylcholine synthesis, loss of apoptotic mechanisms, reactive 
oxygen species generation, endoplasmic reticulum stress

107–109

14. Trimethylamine N-oxide Suppresses the BA-mediated hepatic farnesoid C receptor 
signaling, increases inflammatory cytokine C-C motif 
chemokine ligand 2 and insulin resistance

110

15. Homocysteine Increases hepatic oxidative stress, induces expression of 
inflammatory cytokines and profibrogenic factors, activates 
the aryl hydrocarbon receptor/CD36 pathway

111–113

16. Serotonin Inhibits energy expenditure of brown adipose tissue, 
blocks mitochondrial uncoupling protein

114

FFA, free fatty acid; NAFLD, nonalcoholic fatty liver disease.
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enhancing the production of beneficial ones.
FMT can reconstruct whole microbial ecosystems. Moreover, 

single beneficial strains or groups of beneficial strains (probiotics) 
can be introduced into the gut microbiota to restore lost function-
ality, while harmful or undesirable strains can be removed with 
antimycotics, antibiotics, or bacteriophages. Finally, microbial 
metabolic pathways might be targeted to minimize or prevent the 
formation of harmful metabolites while enhancing the production 
of beneficial ones.

Data on the efficacy of FMT in the treatment of NAFLD are 
scarce. FMT has been shown to be effective in treating cirrhotic 
individuals with hepatic encephalopathy.118 and alcoholic hepati-
tis.119 NAFLD has also been treated using prebiotics, probiotics, 
and synbiotics. Prebiotics are indigestible food components such 
as that selectively increase the development and activity of help-
ful gut bacteria.120 This concept was eventually broadened to en-
compass fiber-based probiotics and other substrates that the host 
bacteria use selectively and provide health advantages. Not only 
indigestible carbohydrates like galacto-oligosaccharides, fructo-
oligosaccharides, and trans-galacto-oligosaccharides but also 
other substances like polyphenols and polyunsaturated FAs that 

can modulate the gut microbiota are included in the new defini-
tion.121 Probiotics are living, nonpathogenic bacteria that, when 
ingested, can improve the host’s health. Lactobacilli, Streptococci, 
and Bifidobacteria are the most widely used probiotics in clinical 
studies.122

Synbiotics are a combination of probiotics and prebiotics that 
positively impact the host. According to animal and human tri-
als data, synbiotics may help alleviate NAFLD-related dysbiosis 
and liver disease. In NAFLD patients, for example, a recent meta-
analysis discovered that taking synbiotics/probiotics was linked 
to improvement of liver-specific indicators of hepatic stiffness, 
inflammation, and steatosis.123 The therapeutic strategy of using 
a bacteriophage to target a specific strain, especially cytolytic E. 
faecalis, was efficacious in treating ethanol-induced liver injury in 
humanized mice.

Emerging therapeutic methods can change gut microbiota com-
position to promote the synthesis of beneficial metabolites and de-
crease the production of toxic metabolites. For example, 3, 3-dime-
thyl-1-butanol can prevent microbial trimethylamine lyases from 
converting dietary choline to trimethylamine. Trimethylamine is 
a well-known toxic metabolite that can induce inflammation in 

Fig. 3. Gut microbiome-centered therapeutic strategies against NAFLD. Dysbiosis promotes the process of NAFLD via multiple pathways. Gut microbi-
ome-targeted therapeutic strategies include probiotic, prebiotic, synbiotic, and FMT that can reverse dysbiosis and mitigate the process of NAFLD. BCAA, 
branched-chain amino acid; FMT, fecal microbiota transplantation; NAFLD, nonalcoholic fatty liver disease; SCFA, short-chain fatty acid.
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gut, and prolonged inflammation can induce IBD and colorectal 
cancer.124 Other studies have determined that increased levels of 
beneficial metabolites such as SCFA can improve liver steatosis. 
Another drug, tributyrin, which is a butyrate prodrug, is reported to 
protect mice from insulin resistance, obesity, and hepatic steatosis, 
whereas acetate and propionate supplementation prevented diet-
induced weight gain, insulin resistance, and hepatic steatosis.125 
XR and TGR5 signaling pathways that modulate BA metabolism 
are also interesting therapeutic targets, such as obeticholic acid is 
shown to improve fibrosis, portal hypertension, and hepatic steato-
sis in animal models and improved histological features in NASH 
patients. In addition, fibroblast growth factor has been established 
as a therapeutic agent for metabolic diseases because of its role 
in lipid and carbohydrate metabolism. Clinical trials of fibroblast 
growth factor-based therapies have shown its efficacy in patients 
with NAFLD. These treatments contain fibroblast growth fac-
tor analogues that can reduce liver inflammation and fibrosis.126 
NGM282, counterpart of fibroblast growth factor 19 that modu-
lates BA synthesis and glucose balance, has been identified as hav-
ing the potential to reduce hepatic steatosis in NASH patients.127 
Farnesoid X receptor agonist, obeticholic acid, is a first-in-class 
approved agonist for noncirrhotic primary biliary cholangitis treat-
ment; however, second-generation farnesoid X receptor agonists 
are in development to overcome the side effects of the first-in-
class drug. For example, MET409 is a second-generation farnesoid 
X receptor agonist which has shown better efficacy and less side 
effects such as pruritus and increase in low-density lipoprotein 
than obeticholic acid.128 Tropifexor and cilofexor are farnesoid X 
receptor agonists possessing distinct structures from obeticholic 
acid and MET409. A study reported that administration of 30 mg 
cilofexor for 12 weeks in NASH and fibrosis patients decreased 
liver stiffness and hepatic fat and improved liver biochemistry.129 
Additionally, under development for NAFLD treatment are specif-
ic agonists for the thyroid hormone receptor-beta, namely resme-
tirom and VK2809. Resmetirom is the pioneer oral, liver-targeted 
thyroid hormone receptor-beta 1-selective agonist. In a 36-week 
phase II randomized clinical study, resmetirom achieved NASH 
resolution in a subgroup of patients with control biopsies. Simul-
taneously, improvements were recorded in liver steatosis, liver 
stiffness, lipid serum profile, and fibrosis biomarkers like Pro-C3 
and hepatic enzymes. This was coupled with a marked reduction 
in NAFLD activity.130 VK2809, an alternative thyroid hormone 
receptor-beta agonist, undergoes hepatic metabolism through the 
action of CYP450 enzymes. It had a highly favorable tolerability 
profile, and a substantial decrease in hepatic fat was detected by 
magnetic resonance imaging following a 12 weeks of treatment.131

Conclusions
A growing body of evidence indicates that the microbiome uni-
fies and explains the divergent findings in liver disease-related 
investigations. The broad interplay between the gut microbiota 
via specialized chemicals such as trimethylamine, acetaldehyde, 
and lipopolysaccharide, and the host immune system via Kupffer-
cell-mediated liver inflammation is now widely accepted as play-
ing a role in liver damage. However, we still do not completely 
understand the interactions between the microbiota and the liver. 
Many critical molecular processes in the etiology of liver disease 
have been elucidated primarily in animal models, notably rodents. 
Including the microbiome in these models will give researchers a 
more comprehensive picture of the liver ecosystem. Because tech-
nical heterogeneity can hide underlying biological signals in mi-

crobiome research, there is a need for uniformity in technological 
platforms and standardized methods so that results from diverse 
laboratories and model species can be replicated and confirmed. 
It is also crucial to find an animal model that closely resembles 
human illness in all physiological and metabolic aspects because 
studies have constantly been finding evidence of an association be-
tween NAFLD risk and extra-hepatic cancer development in both 
sexes. Furthermore, this review highlights the importance of plac-
ing more attention on developing biomarkers based on microbi-
ome and metabolic profile that can diagnose the stage of NAFLD, 
assess the risk, and help in the selection of a specific treatment 
approach.

We are gradually moving away from observational studies in 
people as research lays the groundwork for microbiome-based 
treatment modalities like FMT and probiotic therapies. However, 
effectively translating and applying results from animal models to 
humans demands well-designed, large-scale clinical studies en-
compassing a wide range of illness etiologies and health status. 
We underline the necessity of concentrating on microbiome-aware 
initiatives to efficiently confront the socio-economic burden of 
this range of liver disorders as the microbiota functions in hepatic 
disease development, prognosis, and therapy become better under-
stood.
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